38 research outputs found

    Linguistic style in Dorothy Richardson's Pilgrimage

    Get PDF

    Does Reproductive Justice Demand Insurance Coverage for IVF?

    Get PDF
    This paper comes out of a panel honoring the work of Anne Donchin (1940-2014), which took place at the 2016 Congress of the International Network on Feminist Approaches to Bioethics (FAB) in Edinburgh. My general aim is to highlight the contributions Anne made to feminist bioethics, and to feminist reproductive ethics in particular. My more specific aim, however, is to have a kind of conversation with Anne, through her work, about whether reproductive justice could demand insurance coverage for in vitro fertilization. I quote liberally from Anne’s work for this purpose, but also to shower the reader with her words, reminding those of us who knew her well what a wonderful colleague she was

    Repeat controlled human malaria infection of healthy UK adults with blood-stage plasmodium falciparum:Safety and parasite growth dynamics

    Get PDF
    In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03906474, NCT02927145

    Comorbidities and the referral pathway to access joint replacement surgery: an exploratory qualitative study

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The research was funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care North Thames (CLAHRC) at Barts Health NHS Trust

    Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection

    Get PDF
    There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Occult rib fractures: defining the cause

    No full text
    The probability of physical abuse (PA) is high in children with occult rib fractures. Other causes include non-intentional trauma, post surgery and cardiopulmonary resuscitation. Bone fragility increases the risk of fractures, namely metabolic bone disease of prematurity (MBDP), osteogenesis imperfecta, rickets and rare metabolic bone diseases. ‘Occult rib fractures have a high probability of physical abuse’ This case series describes 61 children under two years of age with rib fractures and associations with clinical and radiological features and aetiology. There were 20 cases of PA, 11 post surgical and three non-intentional trauma. Two cases had fractures following cardiopulmonary resuscitation, 18 MBDP and one metabolic bone disease. In six cases, the cause remained unknown. The number and distribution of rib fractures and the age of infants did not discriminate between MBDP and PA. Fractures were predominantly posterior, postero-lateral or lateral. All cases of MBDP had a gestational age of 31 weeks or less and birth weight < 1.25 kg. Each child with MBDP had at least one additional risk factor. Chronic lung disease was recorded in seven, prolonged total parenteral nutrition in ten, steroid use in four, furosemide medication in eight and necrotising enterocolitis in three. All PA cases had other associated injuries or signs of neglect. We recommend a comprehensive assessment of infants with occult rib fractures including an examination to exclude associated trauma, a child protection assessment and a full clinical assessment to exclude risk factors for co-existing bone fragility

    Solanimycin: Biosynthesis and Distribution of a New Antifungal Antibiotic Regulated by Two Quorum-Sensing Systems.

    No full text
    The increasing emergence of drug-resistant fungal infections has necessitated a search for new compounds capable of combating fungal pathogens of plants, animals, and humans. Microorganisms represent the main source of antibiotics with applicability in agriculture and in the clinic, but many aspects of their metabolic potential remain to be explored. This report describes the discovery and characterization of a new antifungal compound, solanimycin, produced by a hybrid polyketide/nonribosomal peptide (PKS/NRPS) system in Dickeya solani, the enterobacterial pathogen of potato. Solanimycin was active against a broad range of plant-pathogenic fungi of global economic concern and the human pathogen Candida albicans. The genomic cluster responsible for solanimycin production was defined and analyzed to identify the corresponding biosynthetic proteins, which include four multimodular PKS/NRPS proteins and several tailoring enzymes. Antifungal production in D. solani was enhanced in response to experimental conditions found in infected potato tubers and high-density fungal cultures. Solanimycin biosynthesis was cell density dependent in D. solani and was controlled by both the ExpIR acyl-homoserine lactone and Vfm quorum-sensing systems of the bacterial phytopathogen. The expression of the solanimycin cluster was also regulated at the post-transcriptional level, with the regulator RsmA playing a major role. The solanimycin biosynthetic cluster was conserved across phylogenetically distant bacterial genera, and multiple pieces of evidence support that the corresponding gene clusters were acquired by horizontal gene transfer. Given its potent broad-range antifungal properties, this study suggests that solanimycin and related molecules may have potential utility for agricultural and clinical exploitation. IMPORTANCE Fungal infections represent a major clinical, agricultural, and food security threat worldwide, which is accentuated due to the difficult treatment of these infections. Microorganisms represent a prolific source of antibiotics, and current data support that this enormous biosynthetic potential has been scarcely explored. To improve the performance in the discovery of novel antimicrobials, there is a need to diversify the isolation niches for new antibiotic-producing microorganisms as well as to scrutinize novel phylogenetic positions. With the identification of the antifungal antibiotic solanimycin in a broad diversity of phytopathogenic Dickeya spp., we provide further support for the potential of plant-associated bacteria for the biosynthesis of novel antimicrobials. The complex regulatory networks involved in solanimycin production reflect the high metabolic cost of bacterial secondary metabolism. This metabolic regulatory control makes many antibiotics cryptic under standard laboratory conditions, and mimicking environmental conditions, as shown here, is a strategy to activate cryptic antibiotic clusters.Supported by Biotechnology and Biological Sciences Research Council (BBSRC; UK) through award BB/N008081/1 to GPCS, FJL and JM. MAM was supported by an EU Marie-Curie Intra-European Fellowship for Career Development (FP7-PEOPLE-2011-IEF) grant number 298003. Work in the Matilla laboratory was supported by grant from the Spanish Ministry for Science and Innovation/Agencia Estate 25 de Investigación 10.13039/501100011033 (PID2019-103972GA-I00)
    corecore